advanced3-4 hours
Build Retrieval-Augmented Generation (RAG) Systems at Scale
Complete guide to building production RAG systems. Handle document processing, embedding management, and LLM integration.
Challenge
Building RAG systems requires coordinating document processing, chunking strategies, embedding generation, vector storage, retrieval optimization, and LLM integration across multiple systems.
Solution
Pixeltable unifies the entire RAG stack. From document ingestion to LLM generation, everything is managed through declarative computed columns with automatic synchronization.
Implementation Steps
Step 1 of 2Set up document processing and embedding generation
import pixeltable as pxtfrom pixeltable.iterators import DocumentSplitterfrom pixeltable.functions import openai# Document ingestion and chunkingdocuments = pxt.create_table('rag_documents', {'document': pxt.Document,'title': pxt.String,'source': pxt.String})# Automatic chunking with overlapschunks = pxt.create_view('document_chunks',documents,iterator=DocumentSplitter.create(document=documents.document,chunk_size=512,chunk_overlap=50))# Automatic embedding generationchunks.add_computed_column(embedding=openai.embeddings(chunks.text,model='text-embedding-3-large'))# Automatic vector indexingchunks.add_embedding_index('text', embedding=chunks.embedding)
💡 Complete RAG foundation with automatic document processing and indexing.
Use arrow keys to navigate
Key Benefits
Complete RAG stack in one system
Automatic embedding synchronization
60% faster RAG development
Built-in retrieval optimization
Production-ready scalability
Real Applications
•Enterprise knowledge bases
•Customer support chatbots
•Research question answering
•Document intelligence platforms
Prerequisites
•Understanding of LLMs and embeddings
•Experience with document processing
•Python and API integration knowledge
Technical Needs
•Python 3.9+
•OpenAI API key
•Document storage (local or cloud)
Performance
Development Time
vs building from scratch
60% faster
Learn More
Ready to Get Started?
Install Pixeltable and build your own build retrieval-augmented generation (rag) systems at scale in minutes.