advanced3-4 hours

Build Retrieval-Augmented Generation (RAG) Systems at Scale

Complete guide to building production RAG systems. Handle document processing, embedding management, and LLM integration.

Docs

Challenge

Building RAG systems requires coordinating document processing, chunking strategies, embedding generation, vector storage, retrieval optimization, and LLM integration across multiple systems.

Solution

Pixeltable unifies the entire RAG stack. From document ingestion to LLM generation, everything is managed through declarative computed columns with automatic synchronization.

Implementation Steps

Step 1 of 2

Set up document processing and embedding generation

import pixeltable as pxt
from pixeltable.iterators import DocumentSplitter
from pixeltable.functions import openai
# Document ingestion and chunking
documents = pxt.create_table('rag_documents', {
'document': pxt.Document,
'title': pxt.String,
'source': pxt.String
})
# Automatic chunking with overlaps
chunks = pxt.create_view(
'document_chunks',
documents,
iterator=DocumentSplitter.create(
document=documents.document,
chunk_size=512,
chunk_overlap=50
)
)
# Automatic embedding generation
chunks.add_computed_column(
embedding=openai.embeddings(
chunks.text,
model='text-embedding-3-large'
)
)
# Automatic vector indexing
chunks.add_embedding_index('text', embedding=chunks.embedding)

💡 Complete RAG foundation with automatic document processing and indexing.

Use arrow keys to navigate

Key Benefits

Complete RAG stack in one system
Automatic embedding synchronization
60% faster RAG development
Built-in retrieval optimization
Production-ready scalability

Real Applications

Enterprise knowledge bases
Customer support chatbots
Research question answering
Document intelligence platforms

Prerequisites

Understanding of LLMs and embeddings
Experience with document processing
Python and API integration knowledge

Technical Needs

Python 3.9+
OpenAI API key
Document storage (local or cloud)

Performance

Development Time
vs building from scratch
60% faster

Ready to Get Started?

Install Pixeltable and build your own build retrieval-augmented generation (rag) systems at scale in minutes.